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Abstract
In an earlier paper we presented a formulation for the calculation of the
configuration-averaged optical conductivity in random alloys. Our formulation
is based on the augmented-space theorem introduced by one of us (Mookerjee
1973 J. Phys. C: Solid State Phys. 6 1340). In this communication we shall
combine the augmented space methodology with the tight-binding linear
muffin-tin orbital technique (TB-LMTO) to study the optical conductivities
of two alloys, CuAu and NiPt.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In an earlier communication [1] we developed a formalism for the calculation of the
configuration-averaged optical conductivity of a disordered binary alloy. We showed that
the dominant effect of disorder is to renormalize each propagator as well as the current term in
the Kubo formula. Other corrections involve joint fluctuation of two currents and a propagator
and the vertex corrections in the ladder approximation. In this communication we propose
to study the optical properties of disordered CuAu and NiPt alloys from this first principles
approach. We have chosen these two alloy systems for several reasons: for CuAu, the bunch
of d-like states sits about 2 eV below the Fermi level. For low photon energies, therefore,
optical conductivity is dominated by the intra-band transitions within s–p-like states, which
are extended and rather free-electron-like. As a consequence, the optical conductivity for low
photon energies below �2 eV should have a Drude-like behaviour. For higher photon energies
inter-band transitions between the occupied d states and the higher unoccupied states begin to
take over. In sharp contrast, the Fermi energy of NiPt almost straddles the d-like peak. For
this alloy the Drude behaviour should be confined to a very narrow low photon energy range.
This contrasting behaviour should be reflected in our results.

Earlier theoretical work on optical conductivity for random alloys began with Velický [2],
based on the single-site coherent potential approximation (CPA) in an empirical tight-binding
model alloy. Butler [3] extended the ideas and combined the CPA with the first principles
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Korringa–Kohn–Rostoker (KKR) technique. Development of the KKR-CPA should also
include the work of Gyorffy and Stott [4], Gyorffy and Stocks [5] and Gyorffy and Winter [6].
Scott and Muldawer [7] have obtained high resolution optical data for ordered and disordered
CuAu alloys for polycrystalline films for photon energies between 1.2 and 6.2 eV. We shall
compare our theoretical results with theirs. Banhart [8] used the KKR-CPA to study the optical
conductivity of AgAu alloys. This alloy system has a close resemblance to CuAu. Banhart
found discrepancies of his theoretical results with experiment [10, 11] and argued that various
factors could be responsible: first, the use of the density functional and the single-site mean-
field approximations in theory. The augmented space recursion (ASR) technique proposed by
us [12] goes beyond the single-site mean-field approximation and includes fluctuations without
violating Herglotz analyticity of the configuration-averaged Green functions. The suitability
of the ASR for the study of disordered alloys has been discussed in a series of papers by us and
we direct the reader’s attention to them [13]. Moreover, in both the alloy systems there is a large
size mismatch between the constituents. In an earlier paper [14] we discussed in detail how
to deal with local lattice distortions due to size mismatch between the constituents of an alloy
within the ASR. We applied it to two alloy systems, CuPd and CuBe, and the reader is referred
to the paper for details. Second, there are also effects of surfaces, their roughness, possible
adsorbates and presence of large stresses in the samples, in the experiments. Gunnarsson et al
[9] report theoretical calculations of σ(ω) for Nb3Sb, which is similar to NiPt, in the sense that
in both alloys the Fermi level sits right on the d-like peaks and we expect Drude-like behaviour
only in a very narrow range of photon energies. Again, we shall compare our results with
them. There have been a few more theoretical studies of optical properties of random alloys:
Rhee et al [15] on CoAl, Uba et al [16] on CoPt and Rhee et al [17] on Ni3Al. These works
all base their approach on a large super-cell method to take care of the disorder.

In our earlier paper [1], substitutional disorder dictated our choice of a purely real-space
representation and we had chosen as our basis the minimal set of the tight-binding linear muffin-
tin orbital (TB-LMTO) method [18, 19]. Configuration averaging over various random atomic
arrangements had been carried out using the augmented-space formalism (ASF) introduced
by us earlier for the study of electronic properties of disordered systems [13, 14, 20, 21]. As
mentioned earlier, the ASF goes beyond the usual single-site mean-field approaches and takes
into account configuration fluctuations about the mean field. We shall present here a summary
of the results derived in the earlier paper [1]. In linear response theory, at zero temperature,
the real part of the optical conductivity of a disordered alloy is given by the Kubo–Greenwood
expression [22]:

σ(ω) = S(ω)

ω
(1)

where the configuration-averaged current–current correlation function 〈〈S(ω)〉〉 is given by
1

3π

∑

γ

Tr
∫

dE 〈jγ Im{Gv(E)}j†
γ Im{Gc(E + ω)}〉. (2)

If we define

〈〈Sγ (z1, z2)〉〉 = Tr〈jγ Gv(z1)j†
γ Gc(z2)〉, (3)

then, using the Herglotz1 properties of the Green function, the correlation function becomes

〈〈S(ω)〉〉 = 1

12π

∑

γ

∫
dE [Sγ (E−, E+ + ω) + Sγ (E+, E− + ω) . . .

− Sγ (E+, E+ + ω) − Sγ (E−, E− + ω)] (4)

1 A function f (z) of a complex variable z is called Herglotz if (i) all the singularities lie on the real axis,
(ii) sgn(Im f (z)) = − sgn(Im z) and (iii) f (x) → 0, z = x + i0 and x → ±∞.
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where

F(E±) = lim
δ→0

F(E ± iδ).

It was shown in our earlier paper that one of the dominant contributions to the configuration-
averaged correlation function was due to joint fluctuations of one current and a propagator:

〈〈S(1)
γ (z1, z2)〉〉 =

∫

BZ

d3k
8π3

Tr[Jeff
γ (k, z1, z2)〈〈Gv(k, z1)〉〉Jeff

γ (k, z1, z2)
†〈〈Gc(k, z2)〉〉] (5)

where the effective current was

Jeff
γ (k, z1, z2) = 〈〈jγ (k)〉〉 + 2[Σ(k, z2)f(z2)j(1)

γ (k) + j(1)
γ (k)f(z1)�(k, z1)] . . .

+ �(k, z2)f(z2)j(2)
γ (k)f(z1)�(k, z1). (6)

The contribution of joint fluctuations between the two current terms and one propagator was
given by

〈〈S(2)
γ (z1, z2)〉〉 = 4

∫

BZ

d3k
8π3

Tr[j(1)
γ (k)f(z1)�(k, z1)f(z1)j(1)

γ (k)†〈〈G(k, z2)〉〉 . . .

+ j(1)
γ (k)†f(z2)�(k, z2)f(z2)j(1)

γ (k)〈〈G(k, z1)〉〉]. (7)

The vertex correction terms in the ladder approximation contributed

〈〈Sladder
γ (z1, z2)〉〉 = Tr

∑

L1 L2

∑

L3 L4

�L1 L2
γ (z1, z2)�

L1 L3
L2 L4

�̂L3 L4
γ (z1, z2)

= Tr Γγ (z1, z2) ⊗ Γ̂γ (z1, z2)�(z1, z2) (8)

where
∫

BZ

d3k
8π3

G(k, z2)Jeff
γ (k, z1, z2)G(k, z1) = Γγ (z1, z2)

∫

BZ

d3k′

8π3
G(k′, z1)Jeff

γ (k′, z1, z2)
†G(k′, z2) = Γ̂γ (z1, z2)

and

λ
L1 L2
L3 L4

(z1, z2) =
∫

BZ

d3k
8π3

GL3 L4(k, z1)GL2 L1(k, z2)

ω
L1 L2
L3 L4

= W L1
L3

δL1 L2δL3 L4

W L
L ′ = FL (z2)

[
δL L ′ + 2

∑

L ′′
[BL ′′(z1)G RL ′′,RL ′(z1) · · · + BL ′′(z2)G RL ′′,RL ′(z2)]

]
FL ′(z1)

FL (z) = √
xyδ

(
CL − z


L

)/
〈〈1/
L 〉〉

BL(z) = (y − x)δ

(
CL − z


L

)/
〈〈1/
L 〉〉.

Here x, y are the concentrations of the component atoms, C , 
 are the standard potential
parameters of the TB-LMTO and δ( f ) = f A − fB . These super-matrices in {L} space are
written as λ and ω. The full ladder vertex may now be written as

�(z1, z2) = ω + ω λ ω + ω λ ω λ ω + · · · = ω(I − λ(z1, z2)ω)−1. (9)

The averaged correlation function is then

〈〈Sγ (z1, z2)〉〉 = 〈〈S(1)
γ (z1, z2)〉〉 + 〈〈S(2)

γ (z1, z2)〉〉 + 〈〈Sladder
γ (z1, z2)〉〉. (10)
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Figure 1. The configuration averaged joint density of states and correlation function for CuAu (50–
50) alloy shown as a function of the photon energy.

Table 1. Lowest energy and Vegard’s law lattice constants for CuAu and NiPt.

Lowest energy Vegard’s law
lattice const lattice const

Alloy (A) (A)

Cu50Au50 7.31 7.26
Ni50Pt50 7.09 7.03

2. Results and discussion

We have begun our study with the self-consistent TB-LMTO-ASR calculation on NiPt and
CuAu 50–50 alloys. We have minimized the energy with respect to the variation in the average
lattice constant for both the alloys. Table 1 shows the lowest energy lattice constants and
compares them with the averaged or Vegard law results. As expected, because of the large size
difference between the constituents there is a ‘bowing’ effect, which is most prominent for the
50–50 alloys. The lowest energy lattice constant for both the alloys is greater than the Vegard
law predictions.

Figure 1 shows the comparison between the scaled joint density of states and the averaged
correlation function for a CuAu (50–50) alloy. From the figure it is clear that the transition
rate is dependent both on the initial and the final energies, throughout the frequency range of
interest. That is,

S(ω) 	= |T |2 J (ω)

where

J (ω) =
∫

dE
∫

d3k
8π3

Tr〈Gc(k, E)Gv(k, E + ω)〉.
Figure 1 also shows that the disorder corrections to the current and the vertex correction are
rather small and become negligible beyond photon energies of the order of 22 eV.

Figure 2 shows the optical conductivity for CuAu (50–50) alloy. The inset shows the
configuration averaged density of states for the same alloy. The edge of the d-band complex
is clearly seen to lie about 1 eV below the Fermi energy. The optical conductivity rapidly
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Figure 2. Averaged optical conductivity and the density of states for a CuAu (50–50) alloy, with
the Fermi energy marked on it.
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Figure 3. Left: averaged optical conductivity showing a Drude fit at low photon energies.
Right: experimental data of σ(ω) in disordered CuAu taken from Scott and Muldawer [7].

decreases as we increase the photon energy from zero upwards. This decrease continues until
about 1 eV and then the conductivity rises again and has considerable structure as also shown
in the correlation function for these photon energies (figure 1).

Figure 3 (left) shows the optical conductivity with a Drude fit for the lower photon energies.
The Drude fit is good for photon energies below 1.5 eV. From this information we may deduce
that for low photon energies the conductivity arises due to intra-band transition between the
s–p states, which are free-electron-like and lead to a Drude type behaviour. Above 1.5 eV
there is a onset of inter-band transition between the d and the conduction states, and this leads
to a sharp increase of optical conductivity and structure reflecting the structures in the d-like
states.

Experimental data on disordered CuAu (50–50) are available [7]. The authors have
reported high resolution optical data for both ordered and disordered CuAu for photon energies
between 1.2 and 6.2 eV. In figure 3 right, we show the experimental data for σ(ω) and compare
it with the theoretical data in figure 3 (left). Drude-like behaviour is clearly seen till photon
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Figure 4. Intraband contribution to ε2(ω) for AgAu alloy. Left, theoretical; right, experimental
(Banhart [8]).

energies of ∼1.6 eV in theory and around 2 eV in the experiment. Subsequently σ(ω) rises
again because of transitions from the d states. Both the theory and experiment show a decrease
around 6 eV. The comparison between the two is satisfactory.

We have experimental data on AgAu (50–50) [11], whose density of states closely
resembles CuAu. The inter-band contribution to the imaginary part of the dielectric function
ε2(ω) may be obtained from the optical conductivity data, by subtracting away the Drude
contribution and dividing the result by ω: ε2(ω) = (σ (ω) − σ D(ω))/ω. Below the onset of
the inter-band transitions, this quantity vanishes. It then reaches a maximum at around 3 eV
before decreasing.

We have experimental data on AgAu (50–50) [11], whose density of states closely
resembles CuAu. The experimental data are in good qualitative agreement with figure 4 (right).
The general shape with a shoulder around 2 eV and a maximum just above 3 eV is clearly
reproduced. However, as in Banhart’s discussion, the discrepancy of a lateral shift of about
1 eV is also seen in our results as compared with experiment. This cannot be explained by the
differences between CuAu and AgAu.

Figure 5 shows the joint density of states and the averaged correlation function for the
NiPt (50–50) alloy. The energy–frequency dependence of the effective transition rate is
considerable more pronounced than for CuAu. Disorder corrections to the current terms and
vertex corrections are also greater in the low photon energy region. They become negligible
for high photon energies.

Figure 6 (left) shows the density of states and the averaged optical conductivity for NiPt.
Although the density of states for NiPt qualitatively resembles that for CuAu, unlike the
latter the Fermi level sits right atop the high peak due to the d-like states. The inter-band
transitions between the d states and the conduction band are expected to start for very small
photon energies, with a Drude contribution confined to a very narrow energy range near zero.
The optical conductivity falls sharply in a very narrow energy range and recovers almost
immediately. This is expected from the density of states picture. Since the Drude fit is in a
very narrow range indeed we do not show it explicitly in the figure.

As we were unable to locate experiments on the optical conductivity of NiPt, we turned to
another alloy Nb3Sb whose band structure resembles NiPt in the sense that the Fermi energy
lies almost on a d-like peak. In figure 6 right, we show the optical conductivity of Nb3Sb as
reported by Gunnarsson et al [9]. We note the immediate similarity, with Drude behaviour
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Figure 5. The configuration-averaged joint density of states and correlation function for NiPt (50–
50) alloy shown as a function of photon energy.
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Figure 6. Left: averaged optical conductivity and the density of states for NiPt (50–50) alloy, with
the Fermi energy marked on it. Right: the optical conductivity of Nb3Sb as reported in [9].

in a very narrow range of photon energies and optical conductivity picking up very fast as
transitions take place between the occupied d states and the unoccupied sp-like conduction
states.
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